Apoptotic death in cerebral hemisphere cells is density dependent and modulated by transient oxygen and glucose deprivation

Author(s):  
Ephraim Yavin ◽  
Danielle Marie Billia
2004 ◽  
Vol 11 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Chiung-Chyi Shen ◽  
Hsueh-Meei Huang ◽  
Hsiu-Chung Ou ◽  
Huan-Lian Chen ◽  
Wen-Chi Chen ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Hong Liu ◽  
Qiaomei Dai ◽  
Jing Yang ◽  
Yuwei Zhang ◽  
Bo Zhang ◽  
...  

<b><i>Introduction:</i></b> Cerebral ischemia and reperfusion (CI/R) injury is a devasting cerebrovascular disease, accompanied with ischemia stroke, cerebral infarction. Zuogui Pill (ZGP), as a Chinese traditional medicine, is proved to be effective in many diseases and cancers. Our study aimed to detect the roles of ZGP in CI/R injury. <b><i>Methods:</i></b> Neural stem cells were isolated from rats and induced by oxygen and glucose deprivation and recovery. CCK-8 and flow cytometry were applied to assess the function of ZGP on cell viability and apoptosis. Rat CI/R injury models were established by the middle cerebral artery occlusion and reperfusion. The function of ZGP on CI/R injury was identified via evaluating modified neurological severity score, infarct area, and cognitive impairment. <b><i>Results:</i></b> Compared to the control, the cell viability was obviously decreased in the oxygen and glucose deprivation and recovery (OGD/R) group, while the adverse influence on cells was reversed by cultured plus 10% ZGP serum. Consistently, ZGP attenuated the influence of OGD/R on cell apoptosis. More importantly, ZGP could alleviate CI/R injury of rats by reducing neurological damage and infarct area and promoting cognitive function. <b><i>Conclusion:</i></b> This study provided protective roles of ZGP on cell viability and apoptosis induced by OGD/R. In addition, ZGP played protective roles on neuroinflammation and cognitive function in rats.


2018 ◽  
Vol 475 (7) ◽  
pp. 1253-1265 ◽  
Author(s):  
Kristina K. Durham ◽  
Kevin M. Chathely ◽  
Bernardo L. Trigatti

The cardioprotective lipoprotein HDL (high-density lipoprotein) prevents myocardial infarction and cardiomyocyte death due to ischemia/reperfusion injury. The scavenger receptor class B, type 1 (SR-B1) is a high-affinity HDL receptor and has been shown to mediate HDL-dependent lipid transport as well as signaling in a variety of different cell types. The contribution of SR-B1 in cardiomyocytes to the protective effects of HDL on cardiomyocyte survival following ischemia has not yet been studied. Here, we use a model of simulated ischemia (oxygen and glucose deprivation, OGD) to assess the mechanistic involvement of SR-B1, PI3K (phosphatidylinositol-3-kinase), and AKT in HDL-mediated protection of cardiomyocytes from cell death. Neonatal mouse cardiomyocytes and immortalized human ventricular cardiomyocytes, subjected to OGD for 4 h, underwent substantial cell death due to necrosis but not necroptosis or apoptosis. Pretreatment of cells with HDL, but not low-density lipoprotein, protected them against OGD-induced necrosis. HDL-mediated protection was lost in cardiomyocytes from SR-B1−/− mice or when SR-B1 was knocked down in human immortalized ventricular cardiomyocytes. HDL treatment induced the phosphorylation of AKT in cardiomyocytes in an SR-B1-dependent manner. Finally, chemical inhibition of PI3K or AKT or silencing of either AKT1 or AKT2 gene expression abolished HDL-mediated protection against OGD-induced necrosis of cardiomyocytes. These results are the first to identify a role of SR-B1 in mediating the protective effects of HDL against necrosis in cardiomyocytes, and to identify AKT activation downstream of SR-B1 in cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document